HTTP Data Logging Protocol

Version 1.2

(introduced with Meteohub 4.5g)

1. Mission Statement
The mission of this document is to provide a protocol specification that allows to handover weather data
logged by Meteohub to WD and other PC weather programs. The underlying transport layer should be
TCP/IP as this allows to connect the data logger from anywhere in the world as long as logger and PC
program do have Internet access. The logger should be able to provide live data and also archived data on
request. The protocol should be able to handle all types of sensors of current weather stations.

2. Basic Assumptions

- Communication should be realized as HTTP requests (GET and POST flavor should be supported). This has severe advantages compared to other TCP/IP-based protocols:
 - going through firewalls is very easy and widely supported
 - HTTP is supported on all known platforms, in all programming languages and development environments
 - the logger can be easily tested by simple browser requests
 - request/receive transactional logic behind HTTP requests fits the purpose
- The logger should provide two separate modes.
 - "INFO" mode for information about connected sensors, station data, etc.
 - "DATA" mode for retrieving logged data for a defined time frame
- The logger should reply data wrapped as TEXT/PLAIN in one of two types (the requesting program decides on the type)
 - flat text, line-based (each response is terminated by a line feed).
 - XML (enclosed by a "<logger> ... </logger>" tag)
3. Defined Generic Sensors

Meteohub supports a broad range and number of sensors. Regardless what weather station is connected Meteohub represents the sensor data by a set of defined sensor types. A specific sensor corresponds to one of the defined sensor types and is characterized by an unique ID that is composed from the type name and a number. Most sensor types can have 20 specific sensors (0...19) the thermo, thermo-hygro and data type support up to 40 sensors (0...39).

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Sensor ID</th>
<th>Values</th>
<th>Comment</th>
</tr>
</thead>
</table>
| THB: thermo-hygro-baro | thb0, thb1, ... , thb19 | 1. temperature [°C]
2. humidity [%]
3. dew point in [°C]
4. station pressure [hPa]
5. sealevel pressure [hPa]
6. simple forecast [num1] | this is mostly an indoor sensor, often directly integrated into the weather station. Normally just one sensor available, named thb0. Humidity and forecast are integer, other values have 1 decimal |
| TH: thermo-hygro | th0, th1, ... , th39 | 1. temperature in °C
2. humidity in %
3. dew point in °C | th0 is the standard outdoor sensors, other sensors can be outdoor or indoor, 1 decimal |
| T: thermo | t0, t1, ... , t39 | 1. temperature in °C | pure temperature sensor without humidity information, 1 decimal |
| WIND: wind | wind0, wind1, ..., wind19 | 1. direction [°]
2. gust speed [m/s]
3. aver. wind speed [m/s]
4. wind chill [°C] | direction is integer, other values have 1 decimal |
| RAIN: rain | rain0, rain1, ... , rain19 | 1. rain rate [mm/h]
2. rain fall total [mm] | total rain is counted since beginning of sensor's recording, 1 decimal |
| UV: uv index | uv0, uv1, ... , uv19 | 1. uv index [uvi] | 1 decimal |
| SOL: solar radiation | sol0, sol1, ... , sol19 | 1. radiation [W/m²] | no decimals |
| DATA: numerical values | data0, data1, ... , data39 | 1. numerical value | any value, 2 decimals |

Examples

- "thb0 22.5 55.2 1004.7 1007.9 3" indicates that indoor temp in 22.5°C, 55% relative humidity, dew point at 5.2°C, pressure at station level is 1004.7 hPa, pressure computed to sea level is 1007.9 hPa, forecast is: sunny
- "wind0 45.5 3.1 7.3" states that wind is blowing from NE (45°), with gust speed 5.4 m/s, average wind speed 3.1 m/s, wind chill is 7.3 °C (measured against temperature reading of th0)
- "rain0 1.5 4536.0" states that we have rain at a rate of 1.5 mm per hour, total rain fall measured so far by the sensor is 4536 mm. Values in mm are equivalent to liter per m².

1. num is a number that represents a very basic forecast: 0 = rainy, 1 = cloudy, 2 = some clouds, 3 = sunny, 4 = snowy, 5 = clouds at night, 6 = clear night
2. 0° = North, 90° = East, 180° = South, 270° = West
3. based on temperature reading of th0
4. Commands to be supported by the Logger

The data logger acts on HTTP requests. Parameters can be given as URL parameters (GET mode) or by a transferred data record with name-value pairs (POST mode). The PC weather program has freedom to choose.

4.1 INFO Requests

These requests as for general information about the connected station, location on earth, timezone, and available sensors.

<table>
<thead>
<tr>
<th>Request Parameter</th>
<th>Flat Text Response</th>
<th>XML Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>type=xml</td>
<td>none, flat text responses will be separated by line feeds</td>
<td>none, XML responses will be enclosed in "<logger> ... </logger>" tags.</td>
<td>this switches to XML response mode. Without this parameter plain text will be reported.</td>
</tr>
<tr>
<td>mode=info</td>
<td>none</td>
<td>none</td>
<td>tells the logger that this is an "info request"</td>
</tr>
<tr>
<td>info=station</td>
<td>WMR-928 WMR-100 WMR-200 TE-923 VANTAGE RFXCOM</td>
<td><station>WMR-928</station> <station>WMR-100</station> <station>WMR-200</station> <station>TE-923</station> <station>VANTAGE</station> <station>RFXCOM</station></td>
<td>connected weather station</td>
</tr>
<tr>
<td>info=version</td>
<td>Meteohub x.x</td>
<td><version>Meteohub x.x</version></td>
<td>used version of Meteohub</td>
</tr>
<tr>
<td>info=utcdate</td>
<td>YYYYMMDDHHMMSS</td>
<td><utcdate year=YYYY month=MM day=DD hour=HH minute=MM second=SS>YYYYMMDDHHMMSS</date></td>
<td>date/time in UTC</td>
</tr>
<tr>
<td>info=localdate</td>
<td>YYYYMMDDHHMMSS</td>
<td><localdate year=YYYY month=MM day=DD hour=HH minute=MM second=SS>YYYYMMDDHHMMSS</date></td>
<td>date/time in local time</td>
</tr>
<tr>
<td>info=latitude</td>
<td>DEG,MIN,SEC,HEMI</td>
<td><latitude degree=DEG minute=MIN second=SEC hemisphere=HEMI>DEG,MIN,SEC,HEMI</latitude></td>
<td>hemisphere can be "N" (north) or "S" (south)</td>
</tr>
<tr>
<td>info=longitude</td>
<td>DEB,MIN,SEC,MERID</td>
<td><longitude degree=DEG minute=MIN second=SEC meridian=MERID>DEG,MIN,SEC,Merid</longitude></td>
<td>meridian can be "E" (east) or "W" (west)</td>
</tr>
<tr>
<td>info=altitude</td>
<td>ALT</td>
<td><altitude>ALT</altitude></td>
<td>altitude above sea level in meters</td>
</tr>
<tr>
<td>info=sensorids</td>
<td>SENS1,SENS2,...,SEN</td>
<td><sensor id=SENS1>"SENSx" is sensor ID</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Request Parameter</th>
<th>Flat Text Response</th>
<th>XML Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>info=sensortypes</td>
<td>SENSTYPE1,SENSTYPE2,...,SENSTYPEn</td>
<td>no separate tag, included in "sensor"</td>
<td>see above</td>
</tr>
<tr>
<td>info=sensornames</td>
<td>SENSNAME1,SENSNAME2,...,SENSNAMEn</td>
<td>no separate tag, included in "sensor"</td>
<td>see above</td>
</tr>
</tbody>
</table>

Examples

- Request: "http://..../meteolog.cgi?type=xml&mode=info&info=station&info=utcdate&info=sensorids"
 Response:
  ```xml
  <logger>
    <station>WMR-928</station>
    <utcdate year=2008 month=2 day=27 hour=18 minute=35 second=9>20080227183509</utcdate>
    <sensor id=thb0 type=THB>indoor (living room)</sensor>
    <sensor id=th0 type=TH>outdoor (car port)</sensor>
    <sensor id=wind0 type=WIND>wind</sensor>
    <sensor id=rain0 type=RAIN>rain (backyard)</sensor>
    <sensor id=uv0 type=UV>uv sensor</sensor>
  </logger>
  ```

- Request: "http://..../meteolog.cgi?mode=info&info=station&info=utcdate&info=sensorids&info=sensortypes&info=sensornames"
 Response:
  ```plaintext
  WMR-928
  20080227183509
  thb0,th0,wind0,rain0,uv0
  THB,TH,WIND,RAIN,UV
  indoor (living room),outdoor (car port),wind,rain (backyard),uv sensor
  ```


4.2 DATA Requests

Data requests ask the logger to report all data records that have a time stamp between boundaries given by a start and end time stamp. This allows retrieval of data from specified time frames in the past as well as reading the most actual data in a live mode.

To realize an ongoing incremental reading of actual sensor data, the following flow of control should be realized by the PC program. Incremental read can be easily realized by taking the date stamp of the last received record as start parameter for the next request. This incremental approach allows the logger to optimize its performance by keeping in mind where delivery of data to the PC program has stopped. Having this information cached improves performance of incremental data delivery dramatically. On the other hand it is very easy for the PC program to ask for next data records by using the the last received time stamp as the start value for the next request.

The flow of control for ongoing reading of live data can be like this:

1. PC requests the last logged weather data record ("mode=data", no start/end parameter).
2. Logger returns last values of all logged weather data sensors. Notice newest time stamp received by this request (time stamp has format: "YYYYMMDDHHMMSS").
3. PC evaluates received data. After having done this PC might wait a few seconds and then asks the logger to report data with a newer time stamp than the newest data just received. As the logger doesn't remember time stamps of delivered data the PC program includes the time stamp of the last received data into the request and leaves end time stamp empty. ("mode=data&start=YYYYMMDDHHMMSS").
4. Logger returns all data records newer than the given time stamp. If it is more than 100 records, just the oldest 500\(^4\) are reported. If there is no data available past the given time stamp, an empty response is returned. Continue at step 3.

As an alternative you can also just send a request without start/end parameter every couple of minutes. Disadvantage of this method is that you get duplicated data that has not updated since last request and that you will not get notice of data that has changed more than once since last request. This approach to read the data logger is less accurate (duplicates, data losses) and by it's need for fast polling it adds stress to the system, but it might be more easy to implement.

<table>
<thead>
<tr>
<th>Request Parameter</th>
<th>Flat Text Response</th>
<th>XML Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>type=xml</td>
<td>none, flat text responses will be separated by line feeds</td>
<td>none, XML responses will be enclosed in "<logger> ... </logger>" tags.</td>
<td>this switches to XML response mode. Without this parameter plain text will be reported.</td>
</tr>
<tr>
<td>mode=data</td>
<td>none</td>
<td>none</td>
<td>tells the logger that this is a "data request"</td>
</tr>
<tr>
<td>sensor=string</td>
<td>none</td>
<td>none</td>
<td>tells the logger only to report data of sensors that match "string". Sensor parameter can be specified multiple times in URL.</td>
</tr>
<tr>
<td>"start" parameter omitted</td>
<td>last data record before reaching the time stamp given by "end"</td>
<td>last data record before reaching the time stamp given by "end"</td>
<td>useful to get a time stamp to start with, which is direct predecessor to the times tamp given by "end"</td>
</tr>
</tbody>
</table>

4 If the limit is reached and there are more data records with the same time stamp these are also reported. Therefore, the result can be a bit more than 500 records. This is especially true for weather stations like Vantage or TE923 which report the whole sensor array at the same time.

5 string is used for a substring search in the data line. "th" matches all lines that have "th" in it. This will select sensors like "thb0", "th0", "th1". "th1" selects sensor "th1" but also "th10". "th1+" matches just "th1", not "th10".
The logger reports data based on a sensor's type for each of the sensor readings in scope. The following table explains how the response for each type of sensor looks like.

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Flat Text Response</th>
<th>XML Response</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>THB</td>
<td>timestamp 6 thb?7 values8</td>
<td><code><THB date=YYYYMMDDHHMMSS id=thb? temp=value hum=value dew=value press=value seapress=value fc=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>TH</td>
<td>timestamp th? values</td>
<td><code><TH date=YYYYMMDDHHMMSS id=th? temp=value hum=value dew=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>T</td>
<td>timestamp t? values</td>
<td><code><T date=YYYYMMDDHHMMSS id=t? temp=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>WIND</td>
<td>timestamp wind? values</td>
<td><code><WIND date=YYYYMMDDHHMMSS id=wind? dir=value gust=value wind=value chill=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>RAIN</td>
<td>timestamp rain? values</td>
<td><code><RAIN date=YYYYMMDDHHMMSS id=rain? rate=value total=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>UV</td>
<td>timestamp uv? values</td>
<td><code><UV date=YYYYMMDDHHMMSS id=uv? index=value></code></td>
<td>values as defined in section 3</td>
</tr>
<tr>
<td>SOL</td>
<td>timestamp sol? values</td>
<td><code><SOL date=YYYYMMDDHHMMSS id=sol? rad=value></code></td>
<td>values as defined in section 3</td>
</tr>
</tbody>
</table>

6 in UTC, format: YYYYMMDDHHMMSS
7 ? represents a number between 0 to 9 (0 to 19 in case of TH sensor)
8 list of values as described in section 3
As each weather station has a different configuration of sensors. The following conventions how to map sensors to unique sensor IDs is used by the logger:

<table>
<thead>
<tr>
<th>Weather Station</th>
<th>Mapping of Sensors to IDs</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMR-928, WMR-968</td>
<td>thb0 indoor temp/hygro/baro sensor, th0 primary outdoor temp/hygro sensor, th1...3 additional temp/hygro sensors, t1...3 additional temp sensor, wind0 wind sensor, rain0 rain sensor</td>
<td>additional temp and temp/hygro sensors share the channel id. As a result each of the channels 1...3 can only have a T or TH sensor (not both). Therefore, number of additional sensors is limited to 3.</td>
</tr>
<tr>
<td>WMR-100</td>
<td>thb0 temp/hygro/baro in the base station, th0 primary outdoor temp/hygro sensor, th1...10 additional temp/hygro sensors, wind0 wind sensor, rain0 rain sensor, uv0 uv sensor</td>
<td></td>
</tr>
<tr>
<td>WMR-200</td>
<td>thb0 temp/hygro/baro in the base station, th0 primary outdoor temp/hygro sensor, th1...10 additional temp/hygro sensors, wind0 wind sensor, rain0 rain sensor, uv0 uv sensor</td>
<td></td>
</tr>
<tr>
<td>TE-923 (Mebus, Irox, Nexus, Honywell, ...</td>
<td>thb0 temp/hygro/baro in the base station, th0 primary outdoor thermo/hygro sensor, th1...5 additional thermo/hygro sensors, uv0 additional uv sensor, wind0 wind sensor, rain0 rain sensor</td>
<td></td>
</tr>
<tr>
<td>Vantage</td>
<td>thb0 temp/hygro/baro in the base station, th0 primary outdoor thermo/hygro sensor, th1...7 additional thermo/hygro sensors, th10...13 additional soil thermo/hygro sensor, th15...18 additional leaf thermo/hygro sensor, uv0 additional uv sensor, sol0 solar sensor, wind0 wind sensor, rain0 rain sensor</td>
<td>additional leaf and soil sensors deliver humidity not as relative humidity measured in percent, but as an integer number. Soil delivers a "centibar" value and a "wetness" value.</td>
</tr>
<tr>
<td>RFXCOM</td>
<td>thb0...19 indoor temp/hygro/baro sensor, th0 primary outdoor temp/hygro sensor, th1...39 additional temp/hygro sensors, t1...19 additional temp sensor, uv0...19 additional uv sensor, wind0...19 wind sensor, rain0...19 rain sensor</td>
<td>RFXCOM receiver module reads rf signals of most Oregon sensors. Therefore no hard limit in number of sensors is applicable. However, Meteohub limits number of sensors per type.</td>
</tr>
</tbody>
</table>
Examples

- **Data Request:** "http://.../meteolog.cgi?type=xml&mode=data&start=20080227183500"

 Response:

  ```xml
  <logger>
    <THB date=20080227183508 id=thb0 temp=22.3 hum=63 dew=6.8 press=998.7 seapress=1004.3 fc=3>
    <TH date=20080227183510 id=th0 temp=12.5 hum=34 dew=2.3>
    <WIND date=20080227183510 id=wind0 dir=237 gust=12.4 wind=8.5 chill=8.9>
    <UV date=20080227183521 id=uv0 index=1.2>
  </logger>
  ```

- **Data Request:** "http://.../meteolog.cgi?mode=data&start=20080227183500"

 Response:

  ```plaintext
  20080227183508 thb0 22.3 63 6.8 998.7 1004.3 3
  20080227183510 th0 12.5 34 2.3
  20080227183510 wind0 237 12.4 8.5 8.9
  20080227183521 uv0 1.2
  ```

- **Data Request:** "http://.../meteolog.cgi?mode=data&start=20080227183500&sensor=th&sensor=uv"

 Response:

  ```plaintext
  20080227183508 thb0 22.3 63 6.8 998.7 1004.3 3
  20080227183510 th0 12.5 34 2.3
  20080227183521 uv0 1.2
  ```

- **Initial Data Request:** "http://.../meteolog.cgi?mode=data"

 Response:

  ```plaintext
  20080227183524 rain0 1.5 2847.5
  ```

If no records are available for a given time frame an empty record is returned ("<logger></logger>" phrase in case of xml).

4.3 Error Handling

If an error occurs the logger returns a HTML page that starts with "Error" (directly following the necessary HTML content type header). The explanation what has gone wrong is given in clear text. No data gets transmitted in case of an error.